
January 25, 2007

The Weakest Link:
Mitigating

Web Application
Vulnerabilities

webScurity White Paper

webScurity Inc.
Minneapolis, Minnesota USA

January 25, 2007 Page 2 webScurity inc.

Contents

Executive Summary... 3
Introduction.. 4

Target Audience ...4
Background ...4

Common Web Application Attacks ... 5
Defacement ...5
Worms ..5
Buffer Overruns ...5
URL Parameter Tampering...5
Banner-grabbing ..6
Hidden Field Manipulation...6
Cookie Tampering ...6
SQL Injection..7
Stealth Commanding...7
Cross-site Scripting..7
Forceful Browsing..7

Inadvertently Helping the Attacker... 8
What You Can Do.. 9
Conclusions/Recommendations ... 10
Contacts ... 11
Appendix 1: References.. 12

Open Web Application Security Project ...12
Web Application Security Consortium..12

January 25, 2007 Page 3 webScurity inc.

Section 1

Executive Summary

Insecure Web applications provide an attacker a way through even the

most robust perimeter defenses. This paper describes Web application

vulnerabilities, their respective impact on overall security, and

techniques to mitigate them.

For a long time, the prevailing wisdom has been that firewalls = security.

But as networks have become more and more secure, attackers are

seeking out easier targets. They are increasingly discovering that

manipulating applications can be much more “productive”. After all,

they can get in through the same “door” in the perimeter defenses

deliberately left open for legitimate users such as customers, suppliers,

and trading partners.

Since 2001, webScurity has helped organizations of all sizes address Web

application security. Industries from financial services to healthcare -

food services to distribution - have benefited from our experience and

understanding of Web application security.

The door is open to

customers and

attackers alike

January 25, 2007 Page 4 webScurity inc.

Section 2

Introduction

One of the most important elements of a secure e-commerce

environment is the applications. Web applications written and deployed

without security as a prime consideration can inadvertently:

• Expose sensitive or confidential information

• Facilitate Web site defacement

• Provide access to private networks

• Perpetrate Denial of Service (DoS) attacks

• Facilitate unhindered access to back-end databases

Application attacks cannot be prevented by network firewalls, intrusion-

detection, or even encryption. These attacks work by exploiting the Web

server and the applications it runs, meaning the attackers enter through

the same open “door” in the perimeter defenses that customers use to

access the Web site. Malicious activity cannot be distinguished from

normal, everyday Web traffic.

Target Audience

This paper is targeted toward security specialists, system administrators,

developers, and other individuals interested in learning the importance

of Web application security.

Background

Many of the most serious – and difficult to detect - Web application

attacks take advantage of the stateless nature of the Hypertext Transfer

Protocol (HTTP) and the special programming required to develop

useful applications for the Web. There are two types of attacks:

• Indiscriminate - the attacker has no interest in who your

organization is or what it does, but simply the fact that you have a

Web server

• Targeted (discriminate) - the attacker has selected a Web site for very

specific reasons which might include financial gain, publicity,

business disruption, etc.

Worms are examples of indiscriminate attacks, while the various forms

of parameter manipulation (such as cookie tampering discussed below)

are typically targeted attacks.

The stateless nature of

HTTP doesn’t help

January 25, 2007 Page 5 webScurity inc.

Section 3

Common Web Application Attacks

Defacement

Web site defacement can largely be prevented through detailed server

hardening by an experienced system administrator. However, operating

systems, Web servers (HTTP servers like Apache, IIS, etc.), and other

server software packages are typically shipped in an insecure

configuration. It is up to a seasoned administrator to ensure all

components are configured securely.

It is widely reported that the vast majority (perhaps as high as 90%) of all

attacks exploit improperly configured systems.

Worms
Possibly the most common type of indiscriminate attack, worms like

Code Red, Nimda, and Slapper spread at an incredible pace. Often, they

can infect hundreds of thousands of servers in a matter of minutes.

Worms exploit vulnerabilities in widely-used server software. While

fixes for the vulnerabilities are generally released quickly, it is little

consolation to the hundreds of thousands of organizations that suffer

countless damages due to downtime, lost productivity, and general

business disruption.

Buffer Overruns

One of the most common attacks exploits a common programming

mistake known as “buffer overruns” (also referred to as “buffer

overflows”). Virtually every mainstream software product – commercial

or open-source – has had a buffer overrun issue of one sort or another.

While some buffer overrun conditions can be relatively harmless, others

can be as serious as allowing the attacker administrator access to the

server and/or network.

URL Parameter Tampering

Web applications that use the URL query string to pass information from

page-to-page (a widely-used way of maintaining state) are susceptible to

January 25, 2007 Page 6 webScurity inc.

parameter tampering. This attack is literally as simple as altering the

query string parameter values in the browser’s address bar!

For example, consider the following URL:

http://www.website.com/show_account.asp?loggedin=true&acct=123456789

What happens if the “acct” parameter’s value is changed to “223456789”

and sent back to the server (as shown below)?

http://www.website.com/show_account.asp?loggedin=true&acct=223456789

Banner-grabbing

The first step in any attack is selecting the appropriate “toolbox”. Two

pieces of information that determine the attacker’s toolbox choice are:

• Operating system

• Web server type

A simple process known as banner-grabbing provides the attacker with

both these pieces of information. Using a telnet utility, the attacker can

quickly determine what operating system a given server is running, as

well as the type of Web server (Apache, IIS, etc.) it is using. Knowing

this, the attacker can construct attacks appropriate for the environment.

Hidden Field Manipulation

Closely related to URL parameter tampering (see above), hidden field

manipulation involves altering parameter values, except these are

“hidden” from the user.

Hidden fields are an HTML input type (<input type=”hidden” …>) that

are NOT rendered by the browser and shown to the user – they are

“hidden”. However, because most browsers provide a “View/Source”

option, it is easy for anyone to see – and alter – hidden field values.

The “acct” parameter from the example above could have been

implemented as a hidden field. This would have made it less obvious

and slightly increased the difficulty of altering its value, but it doesn’t

offer much protection against even a novice attacker!

Cookie Tampering

Like URL query string parameters and hidden fields, cookies are a

popular way to maintain state information. While they are slightly more

difficult to locate and alter, their relative level of obscurity compared to

the other two methods is not sufficient to prevent malicious activity.

Freely available tools help automate the process of cookie tampering.

January 25, 2007 Page 7 webScurity inc.

SQL Injection

Data-entry fields can unknowingly provide a convenient way for an

attacker to access an SQL-compliant back-end database and execute their

own SQL statements. Any user input (including hidden fields, URL

query string parameters and cookie values) used by the Web application

to construct SQL statements (usually part of the “where” clause) could

result in the unintended execution of SQL statements “injected” by an

attacker.

SQL injection can be used to bypass authentication, gain unrestricted

access to data, and in extreme cases, allow an attacker to execute

destructive SQL statements like “DROP TABLE users;”!

Stealth Commanding

Similar to SQL injection, stealth commanding allows an attacker to

execute operating system commands on the server without proper

authorization.

Any user input (including hidden fields, URL query string parameters,

and cookie values) used by the Web application to construct operating

system calls (shell scripts, commands, etc.) could allow an attacker to

execute commands of their choice. Because most Web servers (Apache,

IIS, etc.) run as a privileged group/user, the commands executed by the

Web application (on behalf of the attacker) are also privileged. This is

only one example of how stealth commanding can be accomplished.

Cross-site Scripting

Cross-site scripting is the act of injecting malicious HTML tags or client-

side scripting code into HTML form fields. The contents of these fields

are saved to a database where they are later retrieved and automatically

executed by an innocent user. Essentially, it is a way to affect another

user’s experience.

Forceful Browsing

Forceful browsing is the act of directly accessing pages (URL’s) without

consideration for its context within an application. Bypassing intended

application flow can lead to unauthorized access to resources which

could mean a press release getting out before expected to circumventing

authentication altogether.

January 25, 2007 Page 8 webScurity inc.

Section 4

Inadvertently Helping the Attacker

Information that would be insignificant to a normal user is deadly in the

hands of skilled attacker. Something as simple as disclosing the Web

server platform (see banner grabbing discussion above) helps an attacker

form the basis of their attack.

An attacker can also gather valuable information from error messages

reported by the application. The common practice of reporting detailed

error messages can aid the support process in controlled environments.

However, when your audience is literally anyone in the world with an

Internet connection, a different approach is needed.

For example, database error messages from a failed query frequently

contain details of the environment better left undisclosed, such as the

database platform, vendor, and version. They may also include details of

the database’s table structure and layout.

Letting a would-be attacker know they have entered an incorrect user id

or password, specifically, gives them an unnecessary advantage. Generic

messages such as “Log in failed” are much safer.

Error messages are a

great source of

intelligence for

attackers

Don’t give them any

hints

January 25, 2007 Page 9 webScurity inc.

Section 5

What You Can Do

Indiscriminate attacks can often be prevented through extensive server

hardening and keeping patches up-to-date. However, even the latest

patches only provide protection against known attacks. These measures

are important, but unfortunately, are reactive rather than proactive.

Build security into the development cycle by training programmers to

write secure Web applications and conducting 3rd-party source code

assessments. Clear standards and regular internal assessments will also

help ensure secure applications.

Disabling Web server identification and avoiding detailed error

messages will slow down an attacker tremendously.

Install a Web application firewall to ensure all traffic that reaches the

Web server and its applications will be exactly what is expected.

Proper server

hardening and up-

to-date patches

Developer training,

coding standards,

code reviews

Give away as little

as possible

Web application

firewall

January 25, 2007 Page 10 webScurity inc.

Section 6

Conclusions/Recommendations

The degree to which insecure Web applications can undermine

perimeter defenses cannot be over-emphasized. The most robust security

measures will not protect back-end systems if holes exist in the

applications.

Focused attention to the environment behind the firewall is

recommended to ensure on-going security. In addition to proper server

hardening, secure coding practices, and frequent assessments, a Web

application firewall is the perfect compliment to existing perimeter

defenses.

January 25, 2007 Page 11 webScurity inc.

Section 7

Contacts
For more information, please contact info@webscurity.com.

webScurity Inc.

9298 Central Ave NE

Suite 402

Minneapolis, Minnesota USA 55434

Toll Free – 866.SCURITY (728.7489)

International/Twin Cities Metro - 1.763.786.2009

Fax – 1.763.786.3680

info@webscurity.com

www.webscurity.com

January 25, 2007 Page 12 webScurity inc.

Appendix 1: References

Open Web Application Security Project

The Open Web Application Security Project (OWASP) is dedicated to finding

and fighting the causes of insecure software. Everything here is free and open

source. The OWASP Foundation is a 501c3 not-for-profit charitable organization

that ensures the ongoing availability and support for our work. Participation in

OWASP is free and open to all.

http://www.owasp.org

Web Application Security Consortium

The Web Application Security Consortium (WASC) is an international group of

experts, industry practitioners, and organizational representatives who produce

open source and widely agreed upon best-practice security standards for the

World Wide Web.

http://www.webappsec.org

